Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biochemistry (Mosc) ; 89(2): 299-312, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622097

RESUMEN

A decrease in muscle mass and its functionality (strength, endurance, and insulin sensitivity) is one of the integral signs of aging. One of the triggers of aging is an increase in the production of mitochondrial reactive oxygen species. Our study was the first to examine age-dependent changes in the production of mitochondrial reactive oxygen species related to a decrease in the proportion of mitochondria-associated hexokinase-2 in human skeletal muscle. For this purpose, a biopsy was taken from m. vastus lateralis in 10 young healthy volunteers and 70 patients (26-85 years old) with long-term primary arthrosis of the knee/hip joint. It turned out that aging (comparing different groups of patients), in contrast to inactivity/chronic inflammation (comparing young healthy people and young patients), causes a pronounced increase in peroxide production by isolated mitochondria. This correlated with the age-dependent distribution of hexokinase-2 between mitochondrial and cytosolic fractions, a decrease in the rate of coupled respiration of isolated mitochondria and respiration when stimulated with glucose (a hexokinase substrate). It is discussed that these changes may be caused by an age-dependent decrease in the content of cardiolipin, a potential regulator of the mitochondrial microcompartment containing hexokinase. The results obtained contribute to a deeper understanding of age-related pathogenetic processes in skeletal muscles and open prospects for the search for pharmacological/physiological approaches to the correction of these pathologies.


Asunto(s)
Hexoquinasa , Mitocondrias , Humanos , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Especies Reactivas de Oxígeno/metabolismo , Hexoquinasa/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento/fisiología , Mitocondrias Musculares/metabolismo
2.
Aging Cell ; 23(4): e14098, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38379415

RESUMEN

Evaluation of the influence of primary and secondary aging on the manifestation of molecular and cellular hallmarks of aging is a challenging and currently unresolved issue. Our study represents the first demonstration of the distinct role of primary aging and chronic inflammation/physical inactivity - the most important drivers of secondary aging, in the regulation of transcriptomic and proteomic profiles in human skeletal muscle. To achieve this purpose, young healthy people (n = 15), young (n = 8) and older (n = 37) patients with knee/hip osteoarthritis, a model to study the effect of long-term inactivity and chronic inflammation on the vastus lateralis muscle, were included in the study. It was revealed that widespread and substantial age-related changes in gene expression in older patients relative to young healthy people (~4000 genes regulating mitochondrial function, proteostasis, cell membrane, secretory and immune response) were related to the long-term physical inactivity and chronic inflammation rather than primary aging. Primary aging contributed mainly to the regulation of genes (~200) encoding nuclear proteins (regulators of DNA repair, RNA processing, and transcription), mitochondrial proteins (genes encoding respiratory enzymes, mitochondrial complex assembly factors, regulators of cristae formation and mitochondrial reactive oxygen species production), as well as regulators of proteostasis. It was found that proteins associated with aging were regulated mainly at the post-transcriptional level. The set of putative primary aging genes and their potential transcriptional regulators can be used as a resource for further targeted studies investigating the role of individual genes and related transcription factors in the emergence of a senescent cell phenotype.


Asunto(s)
Proteoma , Transcriptoma , Humanos , Anciano , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética , Conducta Sedentaria , Proteómica , Músculo Esquelético/metabolismo , Inflamación/genética , Inflamación/metabolismo
3.
Physiol Genomics ; 55(10): 468-477, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37545425

RESUMEN

Obesity- and type 2 diabetes mellitus-induced changes in the expression of protein-coding genes in human skeletal muscle were extensively examined at baseline (after an overnight fast). We aimed to compare the early transcriptomic response to a typical single meal in skeletal muscle of metabolically healthy subjects and obese individuals without and with type 2 diabetes. Transcriptomic response (RNA-seq) to a mixed meal (nutritional drink, ∼25 kJ/kg of body mass) was examined in the vastus lateralis muscle (1 h after a meal) in 7 healthy subjects and 14 obese individuals without or with type 2 diabetes. In all obese individuals, the transcriptome response to a meal was dysregulated (suppressed and altered) and associated with different biological processes compared with healthy control. To search for potential transcription factors regulating transcriptomic response to a meal, the enrichment of transcription factor-binding sites in individual promoters of the human skeletal muscle was examined. In obese individuals, the transcriptomic response is associated with a different set of transcription factors than that in healthy subjects. In conclusion, metabolic disorders are associated with a defect in the regulation of mixed meal/insulin-mediated gene expression-insulin resistance in terms of gene expression. Importantly, this dysregulation occurs in obese individuals without type 2 diabetes, i.e., at the first stage of the development of metabolic disorders.NEW & NOTEWORTHY In skeletal muscle of metabolically healthy subjects, a typical single meal normalized to body mass induces activation of various transcription factors, expression of numerous receptor tyrosine kinases associated with the insulin signaling cascade, and transcription regulators. In skeletal muscle of obese individuals without and with type 2 diabetes, this signaling network is poorly regulated at the transcriptional level, indicating dysregulation of the early gene response to a mixed meal.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/genética , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Appl Physiol (1985) ; 134(5): 1256-1264, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055032

RESUMEN

We aimed to explore the effect of the 3-day dry immersion, a model of physical unloading, on mitochondrial function, transcriptomic and proteomic profiles in a slow-twitch soleus muscle of six healthy females. We registered that a marked reduction (25-34%) in the ADP-stimulated respiration in permeabilized muscle fibers was not accompanied by a decrease in the content of mitochondrial enzymes (mass spectrometry-based quantitative proteomics), hence, it is related to the disruption in regulation of respiration. We detected a widespread change in the transcriptomic profile (RNA-seq) upon dry immersion. Downregulated mRNAs were strongly associated with mitochondrial function, as well as with lipid metabolism, glycolysis, insulin signaling, and various transporters. Despite the substantial transcriptomic response, we found no effect on the content of highly abundant proteins (sarcomeric, mitochondrial, chaperon, and extracellular matrix-related, etc.) that may be explained by long half-life of these proteins. We suggest that during short-term disuse the content of some regulatory (and usually low abundant) proteins such as cytokines, receptors, transporters, and transcription regulators is largely determined by their mRNA concentration. These mRNAs revealed in our work may serve as putative targets for future studies aimed at developing approaches for the prevention of muscle deconditioning induced by disuse.NEW & NOTEWORTHY Three-day dry immersion (a model of physical unloading) substantially changes the transcriptomic profile in the human soleus muscle, a muscle with predominantly slow-twitch fibers and strong postural function; despite this, we found no effect on the muscle proteome (highly abundant proteins). Dry immersion markedly reduces ADP-stimulated respiration; this decline is not accompanied by a decrease in the content of mitochondrial proteins/respiratory enzymes, indicating the disruption in regulation of cellular respiration.


Asunto(s)
Inmersión , Transcriptoma , Femenino , Humanos , Proteómica , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo
5.
Biochemistry (Mosc) ; 87(9): 1021-1034, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36180992

RESUMEN

Skeletal muscles mainly contribute to the emergence of insulin resistance, impaired glucose tolerance and the development of type 2 diabetes. Molecular mechanisms that regulate glucose uptake are diverse, including the insulin-dependent as most important, and others as also significant. They involve a wide range of proteins that control intracellular traffic and exposure of glucose transporters on the cell surface to create an extensive regulatory network. Here, we highlight advantages of the omics approaches to explore the insulin-regulated proteins and genes in human skeletal muscle with varying degrees of metabolic disorders. We discuss methodological aspects of the assessment of metabolic dysregulation and molecular responses of human skeletal muscle to insulin. The known molecular mechanisms of glucose uptake regulation and the first results of phosphoproteomic and transcriptomic studies are reviewed, which unveiled a large-scale array of insulin targets in muscle cells. They demonstrate that a clear depiction of changes that occur during metabolic dysfunction requires systemic and combined analysis at different levels of regulation, including signaling pathways, transcription factors, and gene expression. Such analysis seems promising to explore yet undescribed regulatory mechanisms of glucose uptake by skeletal muscle and identify the key regulators as potential therapeutic targets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Expresión Génica , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo
6.
Hum Genomics ; 16(1): 24, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869513

RESUMEN

BACKGROUND: More than half of human protein-coding genes have an alternative transcription start site (TSS). We aimed to investigate the contribution of alternative TSSs to the acute-stress-induced transcriptome response in human tissue (skeletal muscle) using the cap analysis of gene expression approach. TSSs were examined at baseline and during recovery after acute stress (a cycling exercise). RESULTS: We identified 44,680 CAGE TSS clusters (including 3764 first defined) belonging to 12,268 genes and annotated for the first time 290 TSSs belonging to 163 genes. The transcriptome dynamically changes during the first hours after acute stress; the change in the expression of 10% of genes was associated with the activation of alternative TSSs, indicating differential TSSs usage. The majority of the alternative TSSs do not increase proteome complexity suggesting that the function of thousands of alternative TSSs is associated with the fine regulation of mRNA isoform expression from a gene due to the transcription factor-specific activation of various alternative TSSs. We identified individual muscle promoter regions for each TSS using muscle open chromatin data (ATAC-seq and DNase-seq). Then, using the positional weight matrix approach we predicted time course activation of "classic" transcription factors involved in response of skeletal muscle to contractile activity, as well as diversity of less/un-investigated factors. CONCLUSIONS: Transcriptome response induced by acute stress related to activation of the alternative TSSs indicates that differential TSSs usage is an essential mechanism of fine regulation of gene response to stress stimulus. A comprehensive resource of accurate TSSs and individual promoter regions for each TSS in muscle was created. This resource together with the positional weight matrix approach can be used to accurate prediction of TFs in any gene(s) of interest involved in the response to various stimuli, interventions or pathological conditions in human skeletal muscle.


Asunto(s)
Regulación de la Expresión Génica , Transcriptoma , Humanos , Músculo Esquelético , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcriptoma/genética
7.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638694

RESUMEN

Skeletal muscle is the principal contributor to exercise-induced changes in human metabolism. Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood and human skeletal muscle during an exercise activate different signaling pathways and induce the expression of many genes in working muscle fibres, the systematic understanding of signaling-metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is still elusive. Herein, a physiologically based computational model of skeletal muscle comprising energy metabolism, Ca2+, and AMPK (AMP-dependent protein kinase) signaling pathways and the expression regulation of genes with early and delayed responses was developed based on a modular modeling approach and included 171 differential equations and more than 640 parameters. The integrated modular model validated on diverse including original experimental data and different exercise modes provides a comprehensive in silico platform in order to decipher and track cause-effect relationships between metabolic, signaling, and gene expression levels in skeletal muscle.


Asunto(s)
Señalización del Calcio , Metabolismo Energético , Ejercicio Físico , Regulación de la Expresión Génica , Modelos Biológicos , Músculo Esquelético/metabolismo , Humanos
8.
Biol Sport ; 38(2): 277-283, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34079173

RESUMEN

Direct determination of muscle fiber composition is invasive and expensive, with indirect methods also requiring specialist resources and expertise. Performing resistance exercises at 80% 1RM is suggested as a means of indirectly estimating muscle fiber composition, though this hypothesis has never been validated against a direct method. The aim of the study was to investigate the relationship between the number of completed repetitions at 80% 1RM of back squat exercise and muscle fiber composition. Thirty recreationally active participants' (10 females, 20 males) 1RM back squat load was determined, before the number of consecutive repetitions at 80% 1RM was recorded. The relationship between the number of repetitions and the percentage of fast-twitch fibers from vastus lateralis was investigated. The number of completed repetitions ranged from 5 to 15 and was independent of sex, age, 1RM, training frequency, training type, training experience, BMI or muscle fiber cross-sectional area. The percentage of fast-twitch muscle fibers was inversely correlated with the number of repetitions completed (r = -0.38, P = 0.039). Participants achieving 5 to 8 repetitions (n = 10) had significantly more fast-twitch muscle fibers (57.5 ± 9.5 vs 44.4 ± 11.9%, P = 0.013) than those achieving 11-15 repetitions (n = 11). The remaining participants achieved 9 or 10 repetitions (n = 9) and on average had equal proportion of fast- and slow-twitch muscle fibers. In conclusion, the number of completed repetitions at 80% of 1RM is moderately correlated with muscle fiber composition.

9.
Biochemistry (Mosc) ; 86(5): 597-610, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33993862

RESUMEN

Skeletal muscles comprise more than a third of human body mass and critically contribute to regulation of body metabolism. Chronic inactivity reduces metabolic activity and functional capacity of muscles, leading to metabolic and other disorders, reduced life quality and duration. Cellular models based on progenitor cells isolated from human muscle biopsies and then differentiated into mature fibers in vitro can be used to solve a wide range of experimental tasks. The review discusses the aspects of myogenesis dynamics and regulation, which might be important in the development of an adequate cell model. The main function of skeletal muscle is contraction; therefore, electrical stimulation is important for both successful completion of myogenesis and in vitro modeling of major processes induced in the skeletal muscle by acute or regular physical exercise. The review analyzes the drawbacks of such cellular model and possibilities for its optimization, as well as the prospects for its further application to address fundamental aspects of muscle physiology and biochemistry and explore cellular and molecular mechanisms of metabolic diseases.


Asunto(s)
Modelos Biológicos , Desarrollo de Músculos , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Estimulación Eléctrica , Ejercicio Físico , Regulación de la Expresión Génica , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
10.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925514

RESUMEN

Various amyloid aggregates, in particular, aggregates of amyloid ß-proteins, demonstrate in vitro and in vivo cytotoxic effects associated with impairment of cell adhesion. We investigated the effect of amyloid aggregates of smooth-muscle titin on smooth-muscle-cell cultures. The aggregates were shown to impair cell adhesion, which was accompanied by disorganization of the actin cytoskeleton, formation of filopodia, lamellipodia, and stress fibers. Cells died after a 72-h contact with the amyloid aggregates. To understand the causes of impairment, we studied the effect of the microtopology of a titin-amyloid-aggregate-coated surface on fibroblast adhesion by atomic force microscopy. The calculated surface roughness values varied from 2.7 to 4.9 nm, which can be a cause of highly antiadhesive properties of this surface. As all amyloids have the similar structure and properties, it is quite likely that the antiadhesive effect is also intrinsic to amyloid aggregates of other proteins. These results are important for understanding the mechanisms of the negative effect of amyloids on cell adhesion.


Asunto(s)
Amiloide/toxicidad , Adhesión Celular/efectos de los fármacos , Conectina/química , Conectina/toxicidad , Músculo Liso/química , Actinas/metabolismo , Animales , Aorta/citología , Células Cultivadas , Pollos , Conectina/aislamiento & purificación , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Electroforesis en Gel de Poliacrilamida , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Microscopía de Fuerza Atómica , Músculo Liso/citología , Agregado de Proteínas , Ratas
11.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530535

RESUMEN

Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.


Asunto(s)
Adaptación Fisiológica , Ejercicio Físico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Transcriptoma , Biología Computacional/métodos , Redes Reguladoras de Genes , Humanos , Anotación de Secuencia Molecular , Fenotipo , Entrenamiento de Fuerza
12.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008893

RESUMEN

Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.


Asunto(s)
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Trastornos Musculares Atróficos/metabolismo , Animales , Humanos
13.
Growth Horm IGF Res ; 53-54: 101323, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32408253

RESUMEN

OBJECTIVE: Insulin-like growth factor I (IGF1) is an important regulator of collagen and extracellular matrix protein expression. We aimed to evaluate the effect of amino acids (AAs) on expression of IGF1 and IGF1-dependent genes in human myotubes and skeletal muscle and supposed that AAs administration increases IGF1 levels in blood and expression of IGF1 and IGF1-dependent genes in trained skeletal muscle, thereby reducing training-induced muscle damage. DESIGN: Human myotubes were incubated with Arg and Leu for 24 h. Then, the effects of long-term branched chain AAs administration (10 weeks, 0.1 g/kg body mass/day) to volunteers (six subjects per AAs and placebo groups) performing large training volumes regularly (cross country skiers, training twice a day) were examined. RESULTS: Incubating the myotubes with AAs increases expression of IGF1 mRNA isoforms and IGF1 secretion by 2-3 times. In athletes, long-term AAs administration increased basal blood levels of IGF1 (~50%) and expression of IGF1Ea mRNA slightly in skeletal muscle. There is no marked increase in expression of COL1A1, COL3A1, COL5A1, and LOX genes in skeletal muscle after AAs administration. However, expression of these genes in the combined group (placebo + AAs; n = 12) significantly correlated with the expression of IGF1Ea mRNA in muscle and did not correlate with IGF1 levels in the blood. CONCLUSIONS: AAs administration increases IGF1 expression in vitro and in vivo. To obtain more pronounced changes in expression of IGF1 and IGF1-dependent genes in skeletal muscle, it may be necessary to increase the dose and/or duration of AAs administration.


Asunto(s)
Arginina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leucina/farmacología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adulto , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Adulto Joven
14.
Sci Rep ; 10(1): 3514, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103137

RESUMEN

Regular low intensity aerobic exercise (aerobic training) provides effective protection against various metabolic disorders. Here, the roles played by transient transcriptome responses to acute exercise and by changes in baseline gene expression during up-regulation of protein content in human skeletal muscle were investigated after 2 months of aerobic training. Seven untrained males were involved in a 2 month aerobic cycling training program. Mass-spectrometry and RNA sequencing were used to evaluate proteome and transcriptome responses to training and acute exercise. We found that proteins with different functions are regulated differently at the transcriptional level; for example, a training-induced increase in the content of extracellular matrix-related proteins is regulated at the transcriptional level, while an increase in the content of mitochondrial proteins is not. An increase in the skeletal muscle content of several proteins (including mitochondrial proteins) was associated with increased protein stability, which is related to a chaperone-dependent mechanism and/or reduced regulation by proteolysis. These findings increase our understanding of the molecular mechanisms underlying regulation of protein expression in human skeletal muscle subjected to repeated stress (long term aerobic training) and may provide an opportunity to control the expression of specific proteins (e.g., extracellular matrix-related proteins, mitochondrial proteins) through physiological and/or pharmacological approaches.


Asunto(s)
Ejercicio Físico/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Estrés Fisiológico/fisiología , Transcriptoma/fisiología , Adulto , Ciclismo , Humanos , Masculino
15.
Eur J Appl Physiol ; 120(3): 665-673, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31970519

RESUMEN

PURPOSE: Iron is an important component of the oxygen-binding proteins and may be critical to optimal athletic performance. Previous studies have suggested that the G allele of C/G rare variant (rs1799945), which causes H63D amino acid replacement, in the HFE is associated with elevated iron indexes and may give some advantage in endurance-oriented sports. The aim of the present study was to investigate the association between the HFE H63D polymorphism and elite endurance athlete status in Japanese and Russian populations, aerobic capacity and to perform a meta-analysis using current findings and three previous studies. METHODS: The study involved 315 international-level endurance athletes (255 Russian and 60 Japanese) and 809 healthy controls (405 Russian and 404 Japanese). Genotyping was performed using micro-array analysis or by PCR. VO2max in 46 male Russian endurance athletes was determined using gas analysis system. RESULTS: The frequency of the iron-increasing CG/GG genotypes was significantly higher in Russian (38.0 vs 24.9%; OR 1.85, P = 0.0003) and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance athletes compared to ethnically matched controls. The meta-analysis using five cohorts (two French, Japanese, Spanish, and Russian; 586 athletes and 1416 controls) showed significant prevalence of the CG/GG genotypes in endurance athletes compared to controls (OR 1.96, 95% CI 1.58-2.45; P = 1.7 × 10-9). Furthermore, the HFE G allele was associated with high V̇O2max in male athletes [CC: 61.8 (6.1), CG/GG: 66.3 (7.8) ml/min/kg; P = 0.036]. CONCLUSIONS: We have shown that the HFE H63D polymorphism is strongly associated with elite endurance athlete status, regardless ethnicities and aerobic capacity in Russian athletes.


Asunto(s)
Proteína de la Hemocromatosis/genética , Resistencia Física/genética , Atletas , Estudios de Casos y Controles , Humanos , Polimorfismo de Nucleótido Simple
16.
J Strength Cond Res ; 34(4): 1103-1112, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30299394

RESUMEN

Lysenko, EA, Popov, DV, Vepkhvadze, TF, Sharova, AP, and Vinogradova, OL. Moderate-intensity strength exercise to exhaustion results in more pronounced signaling changes in skeletal muscles of strength-trained compared with untrained individuals. J Strength Cond Res 34(4): 1103-1112, 2020-The aim of our investigation was to compare the response pattern of signaling proteins and genes regulating protein synthesis and degradation in skeletal muscle after strength exercise sessions performed to volitional fatigue in strength-trained and untrained males. Eight healthy recreationally active males and 8 power-lifting athletes performed 4 sets of unilateral leg presses to exhaustion (65% 1 repetition maximum). Biopsy samples of m. vastus lateralis were obtained before, 1 and 5 hours after cessation of exercise. Phosphorylation of p70S6k, 4EBP1, and ACC increased, whereas phosphorylation of eEF2 and FOXO1 decreased only in the trained group after exercise. Expression of DDIT4, MURF1, and FOXO1 mRNAs increased and expression of MSTN mRNA decreased also only in the trained group after exercise. In conclusion, moderate-intensity strength exercise performed to volitional fatigue changed the phosphorylation status of mTORC1 downstream signaling molecules and markers of ubiquitin-proteasome system activation in trained individuals, suggesting activation of protein synthesis and degradation. In contrast to the trained group, signaling responses in the untrained group were considerably less pronounced. It can be assumed that the slowdown in muscle mass gain as the athletes increase in qualification cannot be associated with a decrease in the sensitivity of systems regulating protein metabolism, but possibly with inadequate intake or assimilation of nutrients necessary for anabolism. Perhaps, the intake of highly digestible protein or protein-carbohydrate dietary supplements could contribute to the increase in muscle mass in strength athletes.


Asunto(s)
Músculo Esquelético/metabolismo , Entrenamiento de Fuerza/métodos , Levantamiento de Peso/fisiología , Adulto , Atletas , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Fatiga Muscular/fisiología , Fosforilación/fisiología , Transducción de Señal/fisiología , Adulto Joven
17.
Physiol Genomics ; 52(1): 35-46, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31790338

RESUMEN

Bidirectional selection for either high or low responsiveness to endurance running has created divergent rat phenotypes of high-response trainers (HRT) and low-response trainers (LRT). We conducted proteome profiling of HRT and LRT gastrocnemius of 10 female rats (body weight 279 ± 35 g; n = 5 LRT and n = 5 HRT) from generation 8 of selection. Differential analysis of soluble proteins from gastrocnemius was conducted by label-free quantitation. Genetic association studies were conducted in 384 Russian international-level athletes (age 23.8 ± 3.4 yr; 202 men and 182 women) stratified to endurance or power disciplines. Proteomic analysis encompassed 1,024 proteins, 76 of which exhibited statistically significant (P < 0.05, false discovery rate <1%) differences between HRT and LRT muscle. There was significant enrichment of enzymes involved in glycolysis/gluconeogenesis in LRT muscle but no enrichment of gene ontology phrases in HRT muscle. Striated muscle-specific serine/threonine-protein kinase-beta (SPEG-ß) exhibited the greatest difference in abundance and was 2.64-fold greater (P = 0.0014) in HRT muscle. Coimmunoprecipitation identified 24 potential binding partners of SPEG-ß in HRT muscle. The frequency of the G variant of the rs7564856 polymorphism that increases SPEG gene expression was significantly greater (32.9 vs. 23.8%; OR = 1.6, P = 0.009) in international-level endurance athletes (n = 258) compared with power athletes (n = 126) and was significantly associated (ß = 8.345, P = 0.0048) with a greater proportion of slow-twitch fibers in vastus lateralis of female endurance athletes. Coimmunoprecipitation of SPEG-ß in HRT muscle discovered putative interacting proteins that link with previously reported differences in transforming growth factor-ß signaling in exercised muscle.


Asunto(s)
Proteínas Musculares/genética , Músculo Estriado/metabolismo , Condicionamiento Físico Animal , Proteínas Serina-Treonina Quinasas/genética , Animales , Femenino , Frecuencia de los Genes/genética , Glucólisis , Humanos , Masculino , Músculo Esquelético/metabolismo , Especificidad de Órganos , Polimorfismo de Nucleótido Simple/genética , Mapas de Interacción de Proteínas , Proteínas Quinasas/genética , Ratas , Adulto Joven
18.
J Strength Cond Res ; 33(9): 2344-2351, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31343553

RESUMEN

Pickering, C, Suraci, B, Semenova, EA, Boulygina, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Leonska-Duniec, A, Pajak, B, Chycki, J, Moska, W, Lulinska-Kuklik, E, Dornowski, M, Maszczyk, A, Bradley, B, Kana-ah, A, Cieszczyk, P, Generozov, EV, and Ahmetov, II. A genome-wide association study of sprint performance in elite youth football players. J Strength Cond Res 33(9): 2344-2351, 2019-Sprint speed is an important component of football performance, with teams often placing a high value on sprint and acceleration ability. The aim of this study was to undertake the first genome-wide association study to identify genetic variants associated with sprint test performance in elite youth football players and to further validate the obtained results in additional studies. Using micro-array data (600 K-1.14 M single nucleotide polymorphisms [SNPs]) of 1,206 subjects, we identified 12 SNPs with suggestive significance after passing replication criteria. The polymorphism rs55743914 located in the PTPRK gene was found as the most significant for 5-m sprint test (p = 7.7 × 10). Seven of the discovered SNPs were also associated with sprint test performance in a cohort of 126 Polish women, and 4 were associated with power athlete status in a cohort of 399 elite Russian athletes. Six SNPs were associated with muscle fiber type in a cohort of 96 Russian subjects. We also examined genotype distributions and possible associations for 16 SNPs previously linked with sprint performance. Four SNPs (AGT rs699, HSD17B14 rs7247312, IGF2 rs680, and IL6 rs1800795) were associated with sprint test performance in this cohort. In addition, the G alleles of 2 SNPs in ADRB2 (rs1042713 & rs1042714) were significantly over-represented in these players compared with British and European controls. These results suggest that there is a genetic influence on sprint test performance in footballers, and identifies some of the genetic variants that help explain this influence.


Asunto(s)
Rendimiento Atlético/fisiología , Carrera/fisiología , Fútbol/fisiología , Población Blanca/genética , 17-Hidroxiesteroide Deshidrogenasas/genética , Aceleración , Adolescente , Alelos , Angiotensinógeno/genética , Niño , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Interleucina-6/genética , Masculino , Polonia , Polimorfismo de Nucleótido Simple , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Receptores Adrenérgicos beta 2/genética , Federación de Rusia , Reino Unido , Adulto Joven
19.
J Strength Cond Res ; 33(10): 2602-2607, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31361736

RESUMEN

Grishina, EE, Zmijewski, P, Semenova, EA, Cieszczyk, P, Huminska-Lisowska, K, Michalowska-Sawczyn, M, Maculewicz, E, Crewther, B, Orysiak, J, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Bondareva, EA, Erskine, RM, Generozov, EV, and Ahmetov, II. Three DNA polymorphisms previously identified as markers for handgrip strength are associated with strength in weightlifters and muscle fiber hypertrophy. J Strength Cond Res 33(10): 2602-2607, 2019-Muscle strength is a highly heritable trait. So far, 196 single nucleotide polymorphisms (SNPs) associated with handgrip strength have been identified in 3 genome-wide association studies. The aim of our study was to validate the association of 35 SNPs with strength of elite Russian weightlifters and replicate the study in Polish weightlifters. Genotyping was performed using micro-array analysis or real-time polymerase chain reaction. We found that the rs12055409 G-allele near the MLN gene (p = 0.004), the rs4626333 G-allele near the ZNF608 gene (p = 0.0338), and the rs2273555 A-allele in the GBF1 gene (p = 0.0099) were associated with greater competition results (total lifts in snatch and clean and jerk adjusted for sex and weight) in 53 elite Russian weightlifters. In the replication study of 76 sub-elite Polish weightlifters, rs4626333 GG homozygotes demonstrated greater competition results (p = 0.0155) and relative muscle mass (p = 0.046), adjusted for sex, weight, and age, compared with carriers of the A-allele. In the following studies, we tested the hypotheses that these SNPs would be associated with skeletal muscle hypertrophy and handgrip strength. We found that the number of strength-associated alleles was positively associated with fast-twitch muscle fiber cross-sectional area in the independent cohort of 20 male power athletes (p = 0.021) and with handgrip strength in 87 physically active individuals (p = 0.015). In conclusion, by replicating previous findings in 4 independent studies, we demonstrate that the rs12055409 G-, rs4626333 G-, and rs2273555 A-alleles are associated with higher levels of strength, muscle mass, and muscle fiber size.


Asunto(s)
Rendimiento Atlético/fisiología , Fuerza de la Mano/fisiología , Fibras Musculares de Contracción Rápida/citología , Fuerza Muscular/genética , Levantamiento de Peso/fisiología , Adolescente , Adulto , Alelos , ADN/análisis , Femenino , Estudio de Asociación del Genoma Completo , Factores de Intercambio de Guanina Nucleótido/genética , Homocigoto , Humanos , Hipertrofia/genética , Masculino , Proteínas Musculares/genética , Fuerza Muscular/fisiología , Polonia , Polimorfismo de Nucleótido Simple , Federación de Rusia , Factores de Transcripción/genética , Adulto Joven
20.
J Physiol ; 597(14): 3727-3749, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31093990

RESUMEN

KEY POINTS: We have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, is altered epigenetically (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression is positively correlated with increasing lean leg mass after training and retraining. In the present study we extensively investigate this novel and uncharacterised E3 ubiquitin ligase (UBR5) in skeletal muscle atrophy, recovery from atrophy and injury, anabolism and hypertrophy. We demonstrated that UBR5 was epigenetically altered via DNA methylation during recovery from atrophy. We also determined that UBR5 was alternatively regulated versus well characterised E3 ligases, MuRF1/MAFbx, at the gene expression level during atrophy, recovery from atrophy and hypertrophy. UBR5 also increased at the protein level during recovery from atrophy and injury, hypertrophy and during human muscle cell differentiation. Finally, in humans, genetic variations of the UBR5 gene were strongly associated with larger fast-twitch muscle fibres and strength/power performance versus endurance/untrained phenotypes. ABSTRACT: We aimed to investigate a novel and uncharacterized E3 ubiquitin ligase in skeletal muscle atrophy, recovery from atrophy/injury, anabolism and hypertrophy. We demonstrated an alternate gene expression profile for UBR5 vs. well characterized E3-ligases, MuRF1/MAFbx, where, after atrophy evoked by continuous-low-frequency electrical-stimulation in rats, MuRF1/MAFbx were both elevated, yet UBR5 was unchanged. Furthermore, after recovery of muscle mass post TTX-induced atrophy in rats, UBR5 was hypomethylated and increased at the gene expression level, whereas a suppression of MuRF1/MAFbx was observed. At the protein level, we also demonstrated a significant increase in UBR5 after recovery of muscle mass from hindlimb unloading in both adult and aged rats, as well as after recovery from atrophy evoked by nerve crush injury in mice. During anabolism and hypertrophy, UBR5 gene expression increased following acute loading in three-dimensional bioengineered mouse muscle in vitro, and after chronic electrical stimulation-induced hypertrophy in rats in vivo, without increases in MuRF1/MAFbx. Additionally, UBR5 protein abundance increased following functional overload-induced hypertrophy of the plantaris muscle in mice and during differentiation of primary human muscle cells. Finally, in humans, genetic association studies (>700,000 single nucleotide polymorphisms) demonstrated that the A alleles of rs10505025 and rs4734621 single nucleotide polymorphisms in the UBR5 gene were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power vs. endurance/untrained phenotypes. Overall, we suggest that: (i) UBR5 comprises a novel E3 ubiquitin ligase that is inversely regulated to MuRF1/MAFbx; (ii) UBR5 is epigenetically regulated; and (iii) UBR5 is elevated at both the gene expression and protein level during recovery from skeletal muscle atrophy and hypertrophy.


Asunto(s)
Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Suspensión Trasera/fisiología , Humanos , Masculino , Ratones Endogámicos C57BL , Células Musculares/metabolismo , Proteínas Musculares/metabolismo , Polimorfismo de Nucleótido Simple/fisiología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...